Recording a Whole Band in a Contest

Bill Coleman N4ES Doug Grant K1DG

Why?

- Listen to your runs after the contest
- Listen to your competition's runs
- See what mults you missed
- Check entrants' logs
- Train new ops for the next contest
- Evaluate/compare receiver selectivity
- It's pretty cool!

Technical Issues

- Recording your own frequency is easy
 - Audio is easy to record limited bandwidth
 - Receiver audio to sound card
 - SO2R: stereo
 - 48 hours fits in about 6 GB hard disk space
- Recording a whole band is hard
 - Too much bandwidth
 - Too much data

How to Record the 40M CW Band (7000-7080)

- Use high-speed waveform digitizer board
 - Nyquist Theorem: Fs> 2x Fmax (14.16 MSPS)
 - Need ~90-100 dB dynamic range (~16 bits)
 - Technology exists but is expensive
 - Lots of custom building
 - Lots of data !
 - 16 bits x (2 bytes/16 bits) x 15 MS/sec x 3600sec/hr
 = 108 GBytes/hour
 - 48 hour contest consumes 4.8 terabytes

How to Record the 40M CW Band (7000-7080), Rev. 1

- Use mixer to move 7080 to some lower IF (455 kHz)
 - Requires either surgery on a receiver or homebrew RF mixer
 - A/D converter sample rate is lowered to 1 MSPS or so; now "only" 7 Gbytes per hour
- Use an Undersampling A/D converter
 - Sample 7 MHz signal at 300 kHz or so
 - Sample rate reduced to 2-3 Gbytes/hour

How to Record the 40M CW Band (7000-7080), Rev. 2

- Why not use a PC sound card?
 - Data rate is manageable
 - Requires downconversion of whole band
 - Not enough bandwidth
 - 20 kHz typical
 - 48 kHz maximum

Full Band Downconverters

- Conventional direct conversion receiver
 - No image rejection requires exotic (crystal) filter
 - Difficult to change center frequency (multiple crystal filters)
- Low IF superhet receiver
 - Multiple conversions and/or exotic filtering
 - Very wideband recorder (IF + BW/2)
- This is all very hard

But if we use some trigonometric RF tricks...

The "Time Machine"

- Records stereo (complex) signals
 - Uses quadrature mixer
 - Left & Right = I & Q = X & Y
 - Same principle as phasing SSB
 - Cancels image frequencies
- Doubles recorder's effective bandwidth
- Very simple hardware
- Uses any stereo audio recorder
- Captures 2X the recorder's bandwidth

The Time Machine Board

How to Record the 40M CW Band (7000-7080), Rev. 3 Time Machine centered @ 7040 kHz Stereo HiFi VCR > 40 kHz bandwidth @ 90 dB dynamic range 6 hour capacity or High-end PC sound card (96 ksps) > 40 kHz bandwidth @ 96 dB dynamic range Capacity determined by hard drive space Linrad/SpectraVue software compatible

How it works: Receive-mode Processing

Recording & Storage

Time Machine connects to a (tunable) receiver

Playing the Signals Back

- Uses another quadrature mixer, this time in "transmit" or "upconversion" mode
- Magic happens
- The "Right" signals add, and the "Wrong" signals subtract
- All you hear is what was on the air
 - CW, SSB, PSK, noise, whatever

Does it Work?

- Tune around and tell me! (yes)
- September 2002 CW Sprint Recorded at K1AR on VCR (40M only...80M dipole, Aurora...)
- WRTC 2002 Recorded Digitally at KC1XX with 4-channel home-studio digital audio system on hard-disk (first 12 hours or so, three bands...)
- A few hours of WPX SSB 20M

KOEJ Log Extract (9/02 CW Sprint)

7039 0000 1	W1WEF	1 JACK CT
7039 0000 2	AA3B	2 BUD PA
7036 0001 3	NOSS	1 TOM MO
7033 0002 4	K4FXN	3 DAN KY
7034 0003 5	N9CK	5 STEVE WI
7036 0003 6	W4PA	8 SCOTT TN
7036 0004 7	K0AD	3 AL MN
7049 0005 8	KT3Y	8 PHIL VA
7049 0005 9	KA0GGI	7 TOAD MO
7047 0006 10	KA9FOX	7 SCOTT WI
7046 0007 11	W9TN	2 STEVE IN
7046 0007 12	NA4K	12 STEVE TN
7041 0008 13	K5OT	6 LARRY WI
7041 0008 14	K4RO	14 KIRK TN
7040 0009 15	N2GC	10 MIKE NY
7040 0009 16	N8EA	14 JOE MI
7038 0010 17	K9NW	16 MIKE IN
7038 0010 18	K7SV	15 LARRY VA
7033 0011 19	KORAY	6 RAY MO
7033 0012 20	W1NN	14 ACE PA
7032 0013 21	NB1B	7 DJ MA
7032 0013 22	W4NZ	17 TED TN
7030 0014 23	WQ5L	17 RAY MS

W4NZ Log Extract

7026 0000 1	K3WW	1 CHAS PA
7036 0001 2	N2GC	2 MIKE NY
7036 0001 3	N9CK	3 STEVE NC
7037 0002 4	N9NE	2 TODD WI
7037 0003 5	WQ5L	2 RAY MS
7049 0004 6	N9RV	10 PAT IN
7049 0004 7	KT3Y	7 PHIL VA
7038 0006 8	K4FXN	9 DAN KY
7038 0007 9	KA9FOX	8 SCOTT WI
7039 0008 10	K7SV	14 LARRY VA
7039 0008 11	W1NN	9 ACE PA
7042 0009 12	K9ZO	16 RALPH IL
7042 0010 13	NOSS	14 TOM MO
7046 0010 14	NA4K	14 STEVE TN
7050 0011 15	KJ9C	13 MEL IN
7050 0012 16	N4GN	18 TIM KY
7032 0013 17	K0EJ	22 MARK TN
7032 0014 18	KU8E	21 JEFF GA
7033 0014 19	N8NA	18 KARL DE
7033 0015 20	W2LE	4 PAUL NJ

What we should hear on 7032 at "0013Z"

K0EJ works NB1B
K0EJ is called by W4NZ (and works him)
W4NZ is called by KU8E (and works him)
KU8E takes the frequency
W4NZ moves up 1 kHz and works N8NA

Did N3BB *REALLY* QSY to 40 to Work K4FXN?

14036 0009 17 W6YL 7 SCOTT CA 14036 0009 18 K5AF 15 PAUL TX

7032 0011 19 K4FXN 16 DAN KY

14025 0012 20 N2IC 22 STEVE CO 14025 0012 21 K2KQ 13 DON NY

"Let's go to the Videotape!"

Conclusion

The technology is almost ready to record a full band of a contest (or several bands)

- Limitations include receiver performance, accessibility of a specific QSO, and recording time
- It is a lot of fun to play with!

Want more information?

- Full documentation on ESS web site
 - Schematic, parts list, manual
 - Quadrature PLD code
- www.expandedspectrumsystems.com